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Combustion in plane steady compressible 
flow : general considerations and gasdynamical 

adjustment regions 
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By specializing to the case of unit Lewis number and Prandtl number equal to i, a 
number of general results for the structure of a plane steady compressible flow field, 
within which chemical energy is being liberated by a simple Arrhenius type of 
combustion reaction, can be acquired by the use of elementary arguments. The field 
is of the semi-infinite variety, with a 'flameholder' presumed to  exist at the origin 
of coordinates. In  these circumstances i t  is necessary to specify the velocity gradient 
a t  inlet to  the system or, equivalently, the pressure difference across the field. These 
quantities cannot be selected arbitrarily, and the nature and extent of the restrictions 
upon them is fully explored. Since the Mach number of the stream is hypothesized 
to  be a quantity of order unity, local Damkohler numbers are always small. Therefore 
the field is shown to consist of relatively long regions within which the combustion 
activity takes place, with embedded thin domains of rapid, almost chemically inert, 
gasdynamical adjustment, whose dimension is typically that of the conventional 
shock wave. When the inlet Mach number is less than unity the gasdynamical 
adjustment domains are always adjacent to the origin, and this is also true under 
most supersonic inlet conditions. 

However, there are some special circumstances for which the shock is detached from 
the flameholder and is established in the middle of the combustion activity. A specific 
example is provided by a shock within the induction domain. 

These special circumstances are shown to be ultrasensitive to pressure difference 
across the whole domain. It is also shown that wholly supersonic combustion does 
exist, but only under similar conditions of extreme sensitivity to pressure difference. 

The general arguments are supported and illuminated by asymptotic analysis based 
on the large activation energy of the Arrhenius reaction. Space precludes a full 
asymptotic treatment of the combustion activity but a companion paper that 
analyses these parts of the general field is being prepared in collaboration with 
D. R. Kassoy. Analysis of the shock within the induction domain, together with 
results from the case of subsonic inlet Mach numbers, shows that gasdynamical effects 
can prevent ignition by channelling combustion energy into kinetic energy of the flow 
a t  the expense of thermal energy. 

t Permanent address: Aerodynamics, Cranfield Institute of Technology, Bedford, MK43 OAL, 
England. 
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1. Introduction 
When the Prandtl and Lewis numbers have the constant values of 3 and 1 

respectively, a satisfactory description of a compressible flow field that sustains a 
simple combustion reaction is provided by the pair of differential equations? 

where 

u’--(To = 

is the dimensionless stagnation temperature and (ro is the value of u,’ a t  6 = 0. The 
absolute temperature T and gas velocity u are measured in units of the inlet 
temperature and gas velocity a t  the ‘flameholder’ that  is presumed to  exist a t  the 
location 6 = 0. M is the Mach number of the inlet flow, y is the (constant) ratio of 
the frozen specific heats and 8 is the dimensionless activation energy of the 
combustion reaction; Eb is the final or ‘ burnt ’ value of the stagnation temperature, 
that is achieved as t+m, and A,  is a pre-exponential number, whose value is 
essentially around unity; s is a small (i.e. 1 to  2, say) index; a prime, e.g. u’, indicates 
a differentiation with respect t o  the coordinate 6; this latter quantity is a dimensionless 
version of the spatial coordinate x which incorporates some nonlinear scaling via the 

o h  

where a, h and cp are respectively the constant dimensional mass flux per unit area, 
the variable dimensional thermal conductivity and the dimensional frozen specific 
heat at constant pressure ; for simplification the latter has been assumed constant 
in the derivation of (1) and (2) and hence must be so considered in (4). 

The foregoing model of the combined effects of flow compressibility and chemical 
energy release has recently been employed by Clarke (1983) in a discussion of the 
changes that take place in the structure of the field as MZ/BS increases from those 
low values, of order 82 exp (-o/Tb), where Tb is the temperature of the burnt gas, 
that are typical of conventional thermal flames, up to IYNexp(-nIY), where 
0 < n < l/!&. For Mach numbers in this latter category the field structure is 
independent of the effects of diffusion to a first order of accuracy. Each isolated fluid 
element experiences the effects of combustion in the form of a Semenov type of 
explosion process as i t  is convected through the region 6 > 0. This lack of dependence 
upon the behaviour of neighbouring fluid elements is in part due to the absence of 
diffusion as a process of first-rank importance, but also in part due to the absence 
of the effects of compressibility. I n  the analysis just referred to this latter is a 
consequence of the restriction to asymptotically small Mach numbers in the limit as 

The present work relaxes these restrictions on M and considers it throughout to 
be a quantity in the order class unity in the limit as O-tm. Thus compressibility 

t The conventional ‘ thermal ’ flame is characterized by a Mach number M - 0 that, is exponentially 
small for large activation energy values (0  9 l ) ,  so that T, is the same as Tfor all practical purposes. 
The momentum equation ( 2 )  is then satisfied by its singular solution T/u = 1 and, as explained 
in Appendix B, this is equivalent to the usual isobaric assumption for thermal flames that 
normalizes p to unity throughout the flow field: ( 1 )  simplifies and becomes a single equat,ion for 
T alone (e .g .  Buckmaster & Ludford 1982). 

relationship x f$&? 

(= d d x ,  (4) 

e+m. 
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effects now have a primary role to  play. As pointed out in the article just referred 
to, the quantity within the { } brackets in (1)  is the local Damkohler number, which, 
in view of the O(1) character of M ,  will always be o(1) in the 8+co limit. As a 
consequence the sole combination of the effects of diffusion and reaction can never 
be strong enough to govern the field, even locally, and ‘flame sheets ’ of the type that 
are found in low-speed thermal flames do not exist in these high-Mach-number flows. 

Related work by Kapila, Matkowsky & Van Harten (1982) deals with a doubly 
infinite field, and, as a consequence, has t o  introduce the concept of an ignition 
temperature to circumvent the ‘ cold boundary difficulty ’ ; these authors also employ 
the small-energy-release approximation. The present work is carried through without 
the need to  adopt either of these features, and also deals with a greater range of gas- 
dynamical situations. The early study of the classical ZND type of Chapman-Jouguet 
detonation by Bush & Fendell (1971), using asymptotic methods, is highly relevant 
to the present, more general, class of problems. Their model required some modific- 
ations of strict Arrhenius kinetics but, where they are comparable, i t  will be shown 
in a forthcoming paper that the present analysis is in agreement with theirs. 

It should be remarked that (2) has been derived from the momentum equation by 
eliminating the pressure in favour of the absolute temperature T and the gas velocity 
u (see appendix B, for example) and then integrating the equation once. It is the latter 
move that explicitly introduces the initial strain rate uo into (2). Although i t  is a rather 
unusual parameter to  find in problems of this general character it is nonetheless 
extremely convenient to carry out the whole of the present analysis on the assumption 
that u,, is a parameter open to selection, just like M ,  8, etc. That go cannot be selected 
with total freedom will soon become evident, as will its relationship to quantities with 
more direct physical appeal such as the pressure difference across the half-space 

A few brief words about the organization of the paper may be helpful. Section 2 
derives a very important result about the stagnation temperature, on which much 
subsequent work hinges. Section 3 discusses in general terms the nature of an equation 
for u(5) ; the existence and broad structural character of the field is deduced from this 
relation. A number of subsidiary but necessary results are consigned to Appendices. 
Sections4-7 describe general behaviour for all feasible inlet conditions. Finally, §$8-11 
use large-activation-energy asymptotics to further expose and quantify the details 
of the flow-field behaviour. 

(0 < 5 < a). 

2. Some general properties of solutions for T,  
Observing that R > 0 for all finite 6, ( 1 )  shows that when Ti is zero 

T” = -R < > o  ( % s % b ) .  

Thus % must increase monotonically from its value of Go, 

q.0 = 1 ++(y- 1 )  M2,  

up to the final value T,,, as f ;  increases. 
A formal solution of ( 1 )  makes 

J o  
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where 

is the gradient of the stagnation temperature a t  6 = 0, and (7) defines both qo and 
a,. Writing R, for the mean value of R appropriate to the integral in (6), the latter 
can be re-expressed as follows : 

Ti = R, + ( Ti, - R,) et. 

But T,  and TL must not be allowed to grow without bound as (+ 00, and so 

Ti, = R,, = e.s.t. > 0, (8) 

where R,, is the mean value of R, as 6 increases. I n  view of the character of R as 
disclosed in ( 1 )  it is clear that R is always an exponentially small term (or e.s.t.) and 
positive. When the mixture is chemically inert, so that R = 0, the only physically 
admissible solution of (1) requires T,  = T,, and TL, = 0. It will be seen that the 
modifications due to chemical energy release require an exponentially small amount 
of heat to be conducted into the flameholder in excetw of any requirements on qo that 
may exist by reason of the gasdynamics of the chosen system (essentially, the value 
of a,; cf. (7) and (8) and note the exponentially small values of po that occur for 
convected explosion flames ; Clarke 1983). 

Since TL, must be small under all circumstances, given that T,  must be bounded 
on physical grounds, it follows that (1)  can always be written in the approximate form 
TL iy: R, and T: 6 Ti. Then the asymptotic estimate of TL,, is that it  is essentially equal 
to R when T = 1 and T, = T,,,. 

3. The equation for u 

as a function of 6: 
By eliminating T between (2) and (3) we can derive the following equation for u 

ruu’ = d-- (f- ci) +f- 1 + P g ) .  (9) 

It is convenient here and in the subsequent work to define the following quantities: 

where $ is the chemical energy released per unit mass of mixture, measured in units 
of CpT,  (q  is the dimensional inlet temperature). It has been shown in $2 that TL, 
is an e.s.t. whose value can be readily estimated: $ is essentially a quantity of order 
unity, by sensible physical hypothesis, so that can be treated from now on as known. 

A global energy balance (or a reinterpretation in present terminology of results, 
especially (34), in $4 of Clarke 1983) shows that the stagnation temperature qb in 

_ _  

the final burnt state is given by 
Tsb = Go+&. 
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Then (5) and (12) show that 
rT, ,= f - l>O,  
YM2 

while (12), (13), (14) and (16) show that 

since Ts(6+co)+Tsb. 
P(6 + co ) + F,  

It is convenient to rewrite (9) in the following form: 

ruuf = {u - U + ( E ) I  {u - a)}, (19) 

where u + ( t )  are the real roots of the quadratic expression on the right-hand side of 
(9). Thevalues of u+ - (6)  when = 0 and E-. co are especially significant, and are 
identified as follows : 

(20 ) 

uk(0) U i k .  (21) 

uk(&‘co) ubk3 

Since P(0) is zero the subscript i in (21) can refer to  either ‘initial’ or ‘inert’ states; 
the latter statement arises from the fact that when 0 is zero T, is equal to  T,, 
everywhere, and TLo is also zero; thus 0 vanishes. 

It is important to note that (9) and (19) etc. imply that 

Thus u; = -u:, 

where the inequality here follows from $2. There is no loss of generality in taking 

whence i t  readily follows that 

Furthermore, in view of this monotone character of u+,  - i t  follows that 

u+ 3 u-, (25 ) 

(26 ) -u’ = u+ ’ < 0 .  , 

ui+ 2 u+(t) 2 U b f ,  ui- < u-(c) < ub-. (27a, b )  

This general qualitative behaviour of u+([)  is illustrated in figures 2 and 3. 
Before discussing the character and import of the integral curves u = u(6) that  are 

implied by (19), some further observations must be made. The final equilibrium or 
burnt state is characterized by the vanishing of all spatial gradients, in particular 
u’, as t+ CO. Therefore, from the relation (18) for P ,  the quantities ubk must be the 
roots (note (9) and (18)) of the quadratic 

(28) 

Limitations on the admissible values of B that are implicit in relation (28) are 
discussed in Appendix A, which shows that, in general, 8 must be less than a value 
8- defined in (A3).  The value B- depends upon y ,  the energy release @ and, 
particularly, the inlet Mach number M.  There is a special behaviour of 6- for inlet 
Mach numbers between the upper and lower Chapman-Jouguet values : this is 
explained and quantified in Appendix A. The curves of ub+ and ui+ versus 2 are 
illustrated in figure 1 ,  together with certain other salient pieces of inrormation. 

Appendix C defines local Mach number and, particularly, the local sonic speed u*. 

262- ( f  -8) u+ f - 1 +Q = 0. 
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FIQTJRE 1 .  The loci ub+ and ub-, of possible downstream conditions for a given M > I (or f > 2). 
The full line - is the ub locus for F > 0; the line --- for F = 0 describes the chemically inert 
case; when M > 1, ui+ is always equal to 1 when C? = 0, since f < 2 for M > 1 (see 12)). The picture 
is identical for M < 1, except for the following important difference: since f > 2 for M < 1 (see 12)) 
the points 1 and f - 1 are interchanged on the ub axis, so that the initial condition u = 1 at E = 0 
is now located in the neighbourhood of-the ui- locus. The quantity u* is the sonic speed (see C7)),  
so that ulb is its value in the burnt state at 5 = CO, and uli is its value in the 'inert' or initial 
state at 6 = 0. 

Evidently u+ > u*, while u- < u*;  furthermore, u* is a single-valued function of 6 
and i t  is then useful to talk about domains of subsonic and supersonic flow. Sonic-speed 
loci appear in figures 1, 2 and 3. When 8 has very small values, especially when u 
is near to the u+(f) locus, it is very helpful to know whether an integral curve is 
converging on u+ or moving away from it. The necessary elementary analysis is 
described in Appendix D, which defines two loci, namely uO+. These are sketched 
qualitatively on figure 3. Briefly, when an integral curve lies within the strips between 
uo+ and u+ and uo- and u-, that integral curve is converging upon u+; in the much 
larger space between uo+ and uo- the integral curve is diverging from u+. 

There is now sufficient information to enable one to make a thorough analysis of 
the possible solution curves (i)-(v) that appear on figures 2 and 3. Note the behaviour 
of the pressure, described in Appendix B (particularly (B 3)), and the implications 
that p will change from unity at 6 = 0 to pb* as E+ 00, where the latter pressures 
will depend weakly on 8. 

4. Solutions for supersonic inlet Mach numbers 
Figure 1 indicates that B may be chosen in the range 0 < 8 < 2-. However, if 8 

is positive (19) requires rf3 = {l-ui+}{l-ui-} > 0, 

which implies that 1 > ui+ if u = 1 is to lie in the supersonic domain. Figure 2 then 
makes i t  clear that any integral curve that starts above the u+ locus will remain above 
that locus and will continue with a positive slope; it will therefore never approach 
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“4 

I ’  ---- -(u* = (u+u-): I .. --- r< 

I + t  
0 

FIGURE 2. A sketch of the (u,&)-plane (not to scale). The variations in u+  take place over 
exponentially long intervals in &, while the reduction in u along curve (i), for example, to its 
intersection with u- only occupies an order unity interval in 6, since the position of point u = 1 ,  
t; = 0 relative to uif is such as to imply that Tu’(0) = d is of order unity. For any given M and 
y (or f )  the solution curve (i) and u+ (6 )  both depend upon 8 and the picture will be different in 
detail for each $-value. Because there is no radical qualitative change in the form of the u+  curves 
with changes in 5, a second solution curve (ii) is illustrated on the present figure, simply to  save 
space. Curve (ii) is for a smaller d-value, so that the hydrodynamic adjustment zone in the 
neighbourhood of & = 0 is more like a ‘complete’ shock wave; remember that in practice (i) is 
associated with one set of ui curves, reflecting the choice of 8, while (ii) is associated with a different 
pair of u+ - loci. 

a downstream equilibrium state (ub+). - It is not possible to  construct an initially 
supersonic solution with B = 0, and thus 1 = ui+, for the same reason. Thus possible 
6 values must be negative (more will be said on this topic below) and integral curves 
(i) and (ii) on figure 2 illustrate the consequences of a pair of values of B that could 
be labelled loosely as large and not-so-large, respectively. Such loose labels will be 
given more substance and quantification in the sections to  follow on the asymptotic 
analysis. 

When u+ > 1 2 u > u-, (19) makes it clear that u’ < 0. Thus both curves (i) and 
(ii) descend rapidly towards u-, crossing the u* sonic locus as they do so. It is clear 
that u’ vanishes as u crosses u- (note from Appendix D that, once below uo-, the 
integral curve will already be converging on u+); once below u- the integral curves 
follow the u- locus very closely. Curves (i)  and (ii) therefore represent a rapid 
transition from supersonic to subsonic flow adjacent to the face of the holder a t  6 = 0, 
followed by regions of much slower transition to the final equilibrium state, namely 
ub- in this case. 

The rapid-adjustment domain will subsequently be identified as an effectively 
chemically inert event of shock-wave (or part-shock-wave)-like character. The 
subsequent region will be identified as the one in which all of the chemical energy 
release (burning) takes place, within which ‘ diffusion ’ is relatively unimportant. 
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L .J I-- ---------- r,; (u+u-): 

0 
FIGURE 3. A sketch of the (u, [)-plane (not to scale) t h a t  illustrates the relative dispositions of u+ 
and the lines uOf on which U' = u'-uL = 0. Three possible integral curves are sketched for three 
different &-values on the same diagram in order to economize on space; strictly there should be 
different u+ curves for each & chosen, but they must all be qualitatively similar to the ones displayed 
in the figure. Curve (iii) starts between ui+ and uo+(0), and must therefore depart from u+ in the 
manner shown; curve (iv) is captured by the uo+ locus a t  (c) and thereafter converges on u+ to meet 
the latter at ub+ and thereby constitute a fully supersonic field. Curve (v) is also captured by uo+ 
at ( a ) ,  but escapes from it a t  ( b )  and crosses the sonic line u* via a local shock transition; the final 
stages towards ub- are via subsonic flow. 

5. Solutions for supersonic inlet Mach numbers; small 8-values 
When the chosen value of 8 is very small, in a way that will be quantified in a 

later section, some special considerations arise in the case M > 1 .  The latter implies 
that u = 1 will be close to, but below, ui+. 

Referring to figure 3, consider the three curves (iii), (iv) and (v). Curve (iii) starts 
bebween uo+ and u+; i t  therefore converges on u+ and soon crosses i t  (with u' = 0) 
and escapes into the domain u > u+. Curve (v) starts below uo+ and therefore diverges 
from u+ until, a t  point (a), it  is overtaken by uo+. Between (a )  and ( b ) ,  curve (v) 
converges on u+, but then, in view of the convergence of uo+ itself onto u+, (v) emerges 
a t  point ( b )  and descends rapidly towards u-, where i t  is captured and turned to a 
final subsonic transition to the solution a t  ub- .  Curve (iv) ihstrates  a transition from 
a point near to uo+, and just below i t  a t  6 = 0, to end finally a t  the supersonic solution 
point ub+. Since the locus uo+ does not intersect u*, and (iv) lies mostly between u,,+ 
and u+, the transition from first to final states is a fully supersonic one. Of course 
a diagram such as figure 3 strictly has u+ drawn for a given &-value, which then 
determines both T,(c) and ~ ( 6 ) .  Since the point a t  which an integral curve begins on 
the = 0 line also determines d, only one of the illustrated curves can actually be 
the solution curve u( t )  or, a t  worst, none of them may have this property. From the 
continuous dependence of solutions T,([) and hence u+ (c )  and u(6) on the parameter 
8, at least in 8 < 0, i t  follows that one can always Cnd one d-value for which the 
solution looks like (iv) and another different &-value for which the solution looks like 
(v). From the general qualitative character that the integral and other curves have 
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it can be seen that these d (or a,) values will be very small (of order u; itself) and 
negative. 

Support for the foregoing descriptions of solution curve behaviour will be found 
in the asymptotic analysis to  be described below, particularly in $10. 

To summarize, the conclusions about general features of the field for a supersonic 
inlet flow are as follows. When the 6 (or a,) value is large, that is to say not in the 
neighbourhood of u;(O), the field begins with a rapid zone of near-shock-like character 
within which the local Mach number is brought to a subsonic value with effectively 
no intervention from combustion-energy release ; the latter process is completed in 
a wholly subsonic condition but with steady increase of local Mach number. Examples 
are provided in curves (i) and (ii) on figure 2. When d diminishes towards values in 
the neighbourhood of u;(O), the shock moves away from 6 = 0, and, as illustrated 
by curve (v) on figure 3, can occur after some substantial amount of combustion 
activity has taken place in the upstream supersonic parts of the flow. 

For the fully supersonic field, as well as for those fields that contain a shock a t  
intermediate locations far from [ = 0, 6-values are extremely small, so that final 
pressures are very close to the values obtained from (B 4), with ub+ - given by (A 1 )  
with B = 0, namely 

p b f l i d  = 2Mz{ffrl[(f-2)2-4~11>. (29) 

The subscript id stands for an 'ideal', d = 0, value. 
An important factor in the establishment of a supersonic combustion field or, 

equally, a field with a shock far downstream of the inlet plane 6 = 0, will be its 
ultrasensitivity to the maintenance of a pressure difference across the domain very 
close to 1 to  pb+lid (defined in (29)) and to within extremely narrow limits. 

6. Solutions for subsonic inlet Mach numbers 
The first significant difference between the present case, M < 1, and the M > 1 

situation described in $94, 5 is encountered in the details of the admissible downstream 
conditions, as can be seen from figure 1 .  Shifting the initial point u = 1 ,  6 = 0, onto 
the ui- locus (see caption to figure 1)  has the immediate effect of permitting 6 to have 
positive values, so long as they are less than 6-. Equation (19) still describes the 
behaviour of u ( 0 ,  of course; in the present circumstance a condition 1 < ui- gives 
rise to positive values of u'; consultation of either of figures 2 or 3 shows that 
continuation of this state of affairs is wholly consistent with the final state 
u([+ 03)+ub- and a continuous field structure exists. 

< u+ i t  can be seen from figures 2 or 3 that  any value of d < 0 
will also lead to a solution curve that remains in the neighbourhood of u-. In  
particular, if 121 is of order unity, which implies that I(ui+- 1 )  (1  -ui-)l = 0 ( 1 ) ,  the 
solution curve moves quickly from u = 1 at  6 = 0 into a close proximity to the u- 
locus: the hydrodynamic adjustment zone is therefore aluays adjacent to [ = 0 when 

Since any integral curve that finds itself below the u* locus has no way of increasing 
to pass through u* and therefore converge on u+, a transition from subsonic to 
supersonic flow is absolutely forbidden. This result should be compared with the 
similar impossibility of finding a structure for the class of strong deflagrations in 
Hugoniot-style analysis of metastable streams emanating from 6 = - co (e.g. Williams 
1965, $6.2; for a discussion from a somewhat different standpoint see Clarke 1980, 

Since 1 < < 

M c  1 .  

$4.5).  
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To summarize, there is a continuous field structure for all subsonic inlet Mach 
numbers for all 3 < 8- (see (A 3)). Any largely hydrodynamic adjustments, in which 
combustion plays a minor role, are always adjacent to  6 = 0. 

7. Inlet Mach number between the CJ values 
When McJ- < M < McJ+, (A 7)  shows that 6 < 8- < 0. If 6- is not too close to 

zero, and it will be shown in 5 10 to follow what the precise meaning of 'too close' 
must be, the field must begin with a zone of rapid gasdynamical adjustment under 
nearly chemically inert conditions. Thus u will diminish in such a zone towards the 
'inert ' value ui-, where 

as can be seen from (A 1 )  with F = 0. 

ui- = +(f- a) - I{+(f- 8 ) 2 -  (f- l)}il, (30) 

Suppose for the present that  Ci is exactly equal to  c?-; then (A 3) shows that 

+(f-6-) = (f- 1 +F)i ,  (31) 

and combination of (30) and (31) makes 

ui- = (f- 1 + F)i  - fl. 
From the general result that  

T, = M2d{m-2++(y-l)} = T{l++(y-l)m2}, 

where m is the local Mach number, defined in (C l ) ,  one can now find mi- and 5'- 
by using the condition T, = Ei and taking the value of ui- from (32). After a certain 
amount of tedious but straightforward algebra i t  can be shown that 

Om!- 
(1  -mi"-)Z = 2(y+ 1) -. 

T,  
(33) 

Comparing (33) with (A 5), with < replaced by = , i t  can be seen that mi- under the 
condition 13 = a- is a lower CJ Mach number for flow in the subscript-(i-) state. 
Note that the heat-addition term must be made non-dimensional with respect to the 
local temperature; hence the appearance of q- in (33). 

For any 6 < 6- the associated mi- will be less than the lower C J  value given in 
(33), and it can be seen that a steady-state solution for inlet Mach numbers in the 
interval between McJ- and Mc J+ is only possible with the immediate appearance of 
a thin gasdynamical adjustment zone that reduces the local Mach number to a local 
lower CJ value, or less. 

Some further information about these states of affairs can be acquired from an 
asymptotic analysis of the field in the limit as 8 + 00. 

8. Asymptotic analysis: nearly inert regions near 5 = 0 
The foregoing sections have established a number of important results of a 

qualitative character, and i t  is now time to expand a little on the details of this 
character and to give it,  a t  least approximately, some quantitative form. The method 
of large-activation-energy asymptotics is particularly well suited to these ends and 
it is this method that will be employed from here on. 

(or 6,) is large i t  has been shown in several places that the field must begin 
with a zone of almost chemically inert gasdynamical variations in the neighbourhood 

When 
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of 6 = 0. Since u+ (6) are equalto ui+ to a first order of accuracy in this neighbourhood, 
(19) shows that a first estimate o f i ,  where 

is given by 
(34) 

(35)  

with the condition u,(O) = 1.  In  the absence of reaction effects, (35) is expressive of 
a balance between convective and diffusive effects only; in the terminology of the 
paper on low-speed combustion (Clarke 1983) i t  represents a CD region. The solution 
is most easily given in implicit form as 

Since ui+ -ui- > 0,  i t  can be seen that ui 4ui-  as c-+ co, so that the initial inert, 
or nearly inert, transition is essentially one to subsonic regions near the u- locus. 
When a result such as (36) is valid, T, is essentially equal to T,, to a first order, so 
that T and u' will behave in closely related ways. One must therefore begin to suspect 
that, as E increases and u', T' both diminish as ui + ui-. the R-term in (1) can no longer 
be neglected, as it has been, implicitly, in the development of the result (36). For 
obvious reasons such a domain has been called a CDR region. To test this hypothesis 
write 

(37) 

where gi is a gauge function of 0 that is to be determined, and ci is a value of 6 within 
the new domain. Without loss of generality i t  can be assumed that 

ui(o) = 1 .  (38) 

The distance Ei is to be determined by matching the proposed solution with (36). 
Substituting (37) into (9) and (14) shows that 

where 
7,i = T i  + ( y  - 1 ) M2UiP ui 

The O(1) terms that appear during the course of this substitution of (37) into (9) and 
(14) vanish because !l- and ui- are defined so that 

!l?,-+g(y-l)M2u;_ = Go. (41) 

Substituting (37) into ( l ) ,  and using the definition (40), shows that 

Furthermore this estimate of the influence of R remains valid only so long as 

6 g , T ~ 2 7 ~  = o(1). (44) 

T~~ = 1+(6-&)+C+Dexp(6-6i), 145) 

The general solution of (42), with two so-far-arbitrary constants C and D, is given 

by 

and we encounter a matter that  presents itself in other places in the asymptotic 
analysis, namely the existence of a term in the solution for T, (and hence, here, T , ~ )  
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that grows without bound as t increases. Such behaviour is not acceptable in the whole 
domain of t ,  nor is it  any more acceptable in the various asymptotic domains into 
which the &limit divides the whole domain. It is therefore necessary to make D = 0, 
with the result that 

and (39) can now be solved to find Ui. 

7,i = c^+(t-&), Q =  1+C, (46) 

The solution of (39) is expedited by remembering that 

(see (22)), so that - 
Defining 

f- 8 = u+ + u- = ui+ + ui- 

[2Ui- - (f- $)I = (Ui+ - ui-) > 0. 

A = (ui+-ui-)/rui- > 0, (47) 

(48) 
1 

yM2ui- ' 
=--- 

2 
(y  + 1)  I'M2ui- 

a r  

the solution for tJi that obeys (38) is 

(49) 
ui = - a (Q+ (t- ti)) -- a +- a 1  (-- 6) e-A(E-Ei) + e-A(t-tii). 

A A2 A A 

In  order to match (37) with the solution (34) and (36), ti is chosen so that 

8 
A& = --In ( A 4 M - 2 8 S ( E b - ~ , ) ) ,  q- 

and c^ is chosen so that 

A solution such as (46) is founded on the hypothesis that  constants such as 6 are 
0 ( 1 )  when the relevant coordinate 6-ti is also O(1);  it  is therefore essential to 
incorporate In(@) in the value for ti; the associated order-unity numbers 
A4M-a(T,b- T,,) are not essential in (50), but it is somewhat tidier to have them there, 
and it simplifies the solution for c^ to first order. 

The foregoing results make the tacit assumption that Il-ui-l is O(1). But $6 
explains that subsonic solutions exist for all 8 < 8-, so that there is certainly an 
admissible range of very small $-values. The relationship (35) shows that 

(81 = 11 -?hi+/ (1  - u J ,  

and when 161 is small it  follows that 11 -uiJ is also very small. 
Suppose that 

11-u. 1- I = e-nB, n > 0; (52)  

then ti as given in (73) should be modified to read 

When ui- = 1&ePne, as is implied by (53), it  is clear from (41) that z- is likewise 
of order 1 T O(e-ns). Thus (53) contains a term (1 - n) 8, and ti will only lie in the centre 
of a 'corrective' CDR domain, in which R begins to become prominent, that  is well 
downstream of = 0 if n < 1.  To be a little more precise i t  can be seen that the inert 
CD adjustment zone is only required if 

B > O(A4M-28Se-8 (Eb- GO)). (54) 
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This criterion deJines the word large as used at the outset of this section. When 8 
is of the same order as the right-hand side of (54) a modification of the present analysis 
is required and will be undertaken in $9. 

In  the meantime i t  is important to assess behaviour at the downstream (5- ti + CO) 

end of the CDR transition layer whose character is described by (37) ,  (43) ,  (46) ,  (49) ,  
(50) and (51) .  In the first place one can see that T,  and u behave like 

T,  - T , i - + g i K - & l ,  

U 
u - u i - + g i ~ [ 5 - 5 i l t  

to first order when [-ti is large, from which i t  follows that 

{ 
U 

T -  q-+gi--( - l )M2ui-+gi  A2 

under the same conditions. 

follows. From (22)  one can find the relation 
The various constant factors a,  A ,  etc. in these expressions can be re-organized as 

2!l-  + (7- 1 )  ui- 
ui+ = 

( y+1)M2ui -  y + l  ’ 
so that, noting (47) ,  

ui+-ui- = ~ ”’-( ~- ‘ 1 )  = Tui-A,  
y + l  mt- 

where 
mi- = Mui-(!&)-& 

is the local Mach number under subscript-(i - ) conditions. After some manipulations 
it can finally be shown that 

as 6-ti becomes large and positive. These results will prove to be interesting in the 
light of developments in $9. 

Finally in this section it must be observed that the requirement for bounded 
variation of T,, such as leads to solutions like (46) for example, is consistent with the 
notion, expressed a t  the end of $2, that TL is equal to R to first order. The implication 

(57) 
is that 

and it can be seen from (15)  and (16) that it is sufficiently accurate to  make q b  in 
(57) equal to T,,+Q. 

T;, x A, OSMP2 ece (Tsb - T,OL 

9. Asymptotic analysis near 6 = 0 for small 8 
What constitutes a small value of$ (or a,,) has been ascertained in $8 ,  in particular 

in (54) et seq., from which it can be seen that we should now consider the particular 
case for which 

where Zo is 0(1) by hypothesis. 

(58) a, = gizo, gi f A,M-28s eCe(qb - T,,), 
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As soon as one appreciates that the gauge factor gi is precisely the same as R in 
(1 )  evaluated when T = 1 = u, it can be seen that i t  is now necessary to seek 
asymptotic solutions in the form 

which describe a O R  domain in the neighbourhood of 6 = 0. The boundary 
conditions demand that 

(60) ui(o) = o = Ti(o).  

Equations (58) and (59) in (1)-(3) give, in the limit as O+ co with 6 fixed, 

1 u; = tii + - (Ti  - t7,) + Zo, 
YM2 

T’.-T’’. s1 s1 = 1 ,  ~ ~ i = ~ i + ( y - l ) M ’ l J i .  (62) .  (63) 

(64) 

The solution of (62) that satisfies (60) is 

T , ~  = 6+ (7kio- 1 )  (ef-  I ) ,  

where .ii0 is the derivative of T , ~  with respect to 6 a t  6 = 0. 
Now 7ii can only remain bounded if 7ii0 is equal to unity. I n  the circumstances 

Tsi = 6, (65) 

and the resultant value for Tio is exactly the same as the value given in (57), as indeed 
we should expect i t  to  be. Combination of (63) and (65) leads to the elimination of 
T~ from (61), and the resulting equation for Ui can be solved, with the aid of (60), 

1 

Y 

The quantity 4 is defined by 
4 = -(l--Mp2), 

so that 

First consider the subsonic case M < 1, 4 < 0. The exponential terms in (66) and 
(67) decay as 6 increases, and Ui therefore always ultimately increases linearly with 
6. The temperature also ultimately varies linearly with 6, but only increases with 6 
when yM2 < 1 .  When the inlet flow speed is greater than the isothermal sound speed 
a t  6 = 0 (i.e. when M > l/yi) the temperature falls as 6 increases. Thus the energy 
that is liberated by the chemical reaction goes into increasing the kinetic energy of 
the gas flow, which expands in the process, so that energy is even extracted from the 
thermal mode of energy storage, and the local temperature diminishes. All of these 
effects are present near 6 = 0 although they are of small amplitude by virtue of the 
gauge factor gi in (59). 

Before turning to supersonic inlet conditions, M > 1 ,  i t  is instructive to compare 
(59) (with (66) and (67)) with results (55) and (56) in $8. Note first that if one replaces 
M2 in 4 in (68) by m:-, the constant factors in (66) and (67) become exactly equal 
to those found on (55)  and (56), provided that Z,, is zero. Indeed, when Zo has this 
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value, the behaviour of u/ui- and TIT-  as k - &  increases becomes exactly the same 
as the behaviour of u and T in the present case, since g i / z  is the appropriate 
renormalization of the gauge factor consistent with the fact that T and u are now 
measured in units of temperature and velocity a t  the subscript-(i-) condition. The 
significance of this is clear; when IuoI is large, CD-type gasdynamical adjustments 
occur, ultimately with some explicit intervention from the combustion reaction in 
a CDR domain, and smooth out any uo inputs so that the flow proceeds, somewhat 
downstream of ti (see (53 ) ) ,  in a manner that is both subsonic and essentially 
independent of go. Since ti is necessarily large i t  follows that the influence of u,, is 
lost only a t  some substantial distance downstream of the holder. 'Substantial ' here 
means a large number of diffusion lengths (see (4)) by which one means a length equal 
to 

The ( ) brackets define an average value, and a is the local frozen sound speed; in 
present (near 6 = 0) circumstances i t  is sufficient to evaluate quantities in (70) under 
subscript-(i-) conditions. The quotient h/pC,a defines a molecular mean free path, 
so that in dimensional terms ti is of magnitude 

where li- is the free path and A has been eliminated by using the result towards the 
end of $8. All of the CD- and CDR-type gasdynamical adjustments therefore take 
place within a dimensionally thin layer adjacent to  = 0; quite naturally, such layers 
are of shock-wave-like widths. 

The asymptotic analysis in $8 and the present section has so far dealt with either 
the subsonic situation, described in general terms in $6, the 'in-between' CJ case 
discussed in $7, or with supersonic solutions of types (i) and (ii), shown on figure 2 ,  
in $5. When u0 is small, as in (58) ,  and M > 1 the situation changes and deserves 
some special treatment. This can be appreciated from the fact that  q4 > 0 when M > 1 
(see (69)) and that Ui and 7i in (66) and (67) contain terms in exp(q45). The situa- 
tion is evidently of the kind illustrated in general terms in curves (iii), (iv) and (v) of 
figure 3. 

10. Asymptotic analysis for small u and M > 1 

Suppose for the moment that 'the flow field is chemically inert, so that (36) is the 
complete solution of the problem. When uo is very small and negative, so that ui is 
therefore very close to ui+, this complete solution shows that 

in the neighbourhood of E = 0. I n  particular, if uo is given by (58), (72) can be 
rewritten in the form 

ui x 1 +gic?o$-l(e$t- I ) ,  y > 0, (73) 

where q4 is defined in (68) and the translation from ui+ terminology in (72) into terms 
of q4 is made with the aid of relations (lo), ( l 2 ) a n d  (A i), plus the fact that 

Comparing (73) with (66) shows that the part of Ui that is proportional to e0 is 
a' = O(gJ = o(1). 
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describing behaviour in the upstream outskirts of an inert-flow shock wave, provided 
2, is negative. The remaining parts of l T i  in (66) can have their origin traced back 
to the existence of combustion-energy release by the reaction term R in ( l ) ,  the linear 
superposition of reactive and inert behaviour being validated by the small-perturb- 
ation character of the asymptotic solutions (59). 

The comparisons just made are important because they show that the apparently 
unbounded exponential-growth terms in (66) and (67) are perfectly proper assessments 
of possible physical behaviour, unlike exp (5) terms in T , ~  in (64) for example. The 
seeming unbounded behaviour of the exp ($6) terms will be checked by a re-assessment 
of conditions in the breakdown domain, where giUi ceases to  be O(gi), and the 
establishment of a new CD type of asymptotic domain, in which (35) will clearly play 
a major role. At least, these remarks will be true, in light of (66) and, especially, of 
the general forms of solution (iii), (iv) and (v) exhibited on figure 3, provided that 
so obeys a more stringent condition in the reactive case than a mere requirement for 
it to be negative. 

Remembering that q5 > 0 when M > 1 ,  (66) shows that when 

- 1  - - 1  
0 > a", > ~ - ~ 

yWq5 M 2 -  1 ' (74) 

Ui, and hence u, ultimately increases with increasing 6. When 5 is small, Ui behaves 
like ui - $,of 
to first order, and therefore u begins by actually decreasing near 6 = 0. Clearly this 
is the behaviour exhibited by (iii) on figure 3, and if do is in the range described by 
(74) it  must be anticipated that, as for curves (iii), no solutions exist. 

If 
- 1  - - ~- --I 

so<-- - g o w i t  yM2$ - M2- 1 (75) 

the exponential, specifically exp ($[), reductions in u are a herald of imminent shock 
behaviour, such as that illustrated in (v) on figure 3. One must, however, exercise 
some caution here because (62) is only valid so long as 

egiTi = o ( i ) .  (76) 

This criterion mimics (44), but for the special circumstance that !l'- N 1 N ui-. If 

d , + L  < 0 
Y@$ 

(77) 

is O(1) i t  is evident that  (76) will fail first as a result of the behaviour of the exp ($5) 
term and not as a result of the term that is linear in 6 (see (67)). It will be seen shortly 
that failure of the estimates (59) as a result of the linear-term behaviour leads into 
a domain of growing chemical activity (the induction zone); failure of (59) from the 
exp ($6) origins leads to a nearly inert shock transition to  the vicinity of the u- locus, 
with the result that the induction zone is then initiated under subsonic flow 
conditions. To this extent the situation implicit in the circumstances described by 
(77) et seq. is really of the type illustrated in curve (ii) on figure 2. 

When (77) is true, but the difference is now not 0(1) in the 8-limit but o ( l ) ,  it  can 
be appreciated that the shock-like descent of the u(6) solution curve towards u- will 
be delayed in 6, even to such an extent that  the induction zone will begin to develop 
long before the shock appears; this is the situation implicit in curve (v) on figure 3. 
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But if Zo+ l/yM2q5 is o(1) as 8 + m ,  i t  should not appear in Ui, since there will in 
general be additional terms in the asymptotic representations (59) that are of 
comparable or even larger magnitude. 

The asymptotic analysis described here is therefore not precise enough to yield full 
information on the field behaviour for Zo values that approach Zoccrit (see 75)) 
arbitrarily closely from below. To put this statement another way, and indeed to 
thereby encourage a more constructive outcome of the foregoing analysis, there is 
now enough information contained above to validate the notion that a nearly inert 
shock can exist anywhere in the field, even in the parts where reaction is proceeding 
apace, but we are unable to associate a precise value of to with a given shock position 
(other than to remark that it must be such as to make goorit - Zo > 0 and o(1)) without 
proceeding to asymptotic estimates that are of higher accuracy than (effectively) 
one-term expansions, such as (59). 

Therefore, if one is prepared to forgo more precise knowledge about the difference 
Zocrit-Zo than that it must be positive and o(1) in the &limit, one can propose the 
following simple way to illustrate behaviour of type (v) on figure 3. It can be assumed 
that an effectively inert shock wave whose velocity profile obeys (35) to first order exists 
and is centred about 6 = f[&, where (sh is chosen. Upstream of [sh, velocity and 
temperature profiles will lie close to the u+ locus, as they will do if cF0 = dOcrit in (66) 
and (67) for example, until a transitional region similar to the one implied by (37) 
is encountered, which matches with the upstream outskirts of the inert shock wave. 
Downstream parts of the shock match, via another (67)-type domain, into combustion- 
dominated regions near the subsonic u--locus and thence to completion a t  ub-. This 
state of affairs will shortly be illustrated by the example of a shock wave within the 
induction region, but before doing this one must note the following. 

If, in the same o(1) category of Zocrit-Z0 differences that has just been described, 
one decides not to introduce an inert shock into the field, then a continuation of the 
asymptotic analysis that retains only the linear terms in (66) and (67) will provide 
an estimate of behaviour in the fully supersonic combustion field exemplified by curve 
(iv) on figure 3. 

Let us calculate the value of the slope of the u+ locus a t  f [  = 0;  (24) already shows 
that. when E = 0. 

while from (22) one finds that ui+ - ui- = 2ui+ - (f- 6). In  the particular conditions 
that apply to this section ui+ x 1 and 6 is o( 1)  ; thus 

ui+-ui- x 2-f=  2(1-NM-2)/(y+l), 

where the last result follows from (12). It follows that 

I Ti0 --=- - RO - Si 
u+=--- M2-1 W-1 M2-1' 

where the second and third results derive from ( 1 )  (since T," 4 Ti, see $2) and (58). 
Thus u; is equal to Zoccrit, as can be seen from (58) and (75), and it can be seen with 
the aid of (D 3) that the criterion (75) is just what one needs to ensure that a solution 
curve on figure 3 starts (at  u = 1,  6 = 0) just below the uo+ locus defined in $5. This 
result gives additional weight to the link between solution curves (iv) and (v) on figure 
3 and the present asymptotic analysis, as well as that of $ 1 1 .  

6 F L Y  136 
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11. A shock within the induction domain 
When e0 is arbitrarily close to goorit, defined in (75), Iu- 11 and IT- 11 both increase 

linearly with ( (cf. (59), (66) and (67)). Since M > 1, # > 0, and u- 1 diminishes while 
T- 1 increases with 5. When ( is 0(l/8gi)  the validity criterion (76) is violated and 
new asymptotic estimates are required. It is not difficult to see that these must be 

(78) 
1 

T- l+eT(5'), 

1 
8 

u - 1 +- up),  
where 

E = egi( (79) 

(N.B. gi is defined in (58)). Substituting (78) and (79) into ( l ) ,  (2) and (3), and using 
the limit O+ 00 with 5' fixed, leads in the usual quite straightforward way to the 
solutions M2-1 

T = - l n  I - - ,  a=- > 0, ( 3 yM2-1 

which describe behaviour in an induction domain (e.g. Kassoy 1976). Since the 
principal physical influences in such a region are convection and reaction it is called 
a CR region. The influence of the, in this case supersonic, gasdynamical effects is 
incorporated in the constant a and we observe the estimate, via ( S O ) ,  that  thermal 
runaway or ignition will occur as E+a from below. 

(or ZO) value is such as to lead to a CD shock 
wave within this CR induction domain and therefore ahead of the runaway location 
near a = a. 

Reverting to (-type coordinates for the moment, assume that the interior of the 
shock is located at ( = (sh, where, noting (22), 

But now let us suppose that the 

- 

rushukh = (%h-%h+) (ush-ush-). 

The solution of (86) that satisfies (83) is 

As USh'Ush+, (86) shows that Ukh begins to diminish like Ush-U,h+, as does the 
corresponding T' value, since T, is equal to Tssh in this vicinity (see (84)). Hence there 
will be a CDR region, around &, say, within which it is no longer correct to ignore 
the existence of R and the local variations of T,, as is implicit in (85) and (86). 
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it can readily be shown that, if 

then the functions 7 T  and UT obey equations like (39), (40) and (42), with the following 
changes; for 7si read rST, where 

7sT = 7T-k (y- 1) M2Ush+ C'T, (91) 

for ui- read Ush+, and for Ui read UT. By similar reasoning to  that given between 
(45) and (46), one finds that 

where cT is a constant to be found from matching. Defining B via 

7sT = Q'J!+t-<T? (92) 

[2Ush+-(f-&)] = (ush+-ush-) = r U s h + B  > 0, (93) 

where (83) has been used here, it can be shown that the solution for UT is exactly 
the same as (49) for Ui, with the following changes: redefine a in (48) so that  u,h+ 
replaces ui-,  replace A by - B and replace c^ by cT. 

It is now necessary to match this CDR solution for UT with the CD solution (87) 
and with the CR induction solution (82). The reason for the need to match with both 
(87) and (82) is that there are essentially three unknown quantities in the solutions 
a t  this juncture, namely cT, tT and E s h .  Although one can select t s h  a t  will, i t  is Still 
necessary to solve the system of equations (1 )-(3) in order to Jind Tssh ; this is being 
done here by asymptotic means. Matching of the 11, solution with (87) proceeds in 
a way closely akin to that described between (49) and (51) in $8. It transpires that  

0 
B(&.h-<T) = -- { A 4 M - 2 @ ( ~ b - ~ ~ h ) } 3  Ell+ 

(94) 

(95) 
c i c i  
B B2 

fiT-+-+ 1 = -'( 2 ush+-ush-) 2ush-'ush+3 

where, as described below (93), 6 is a in (48) with u,h+ in place of ui-: 

d = l/y&f2Ush+. (96) 

I n  order to complete the matching with (78) and (82) it is helpful to define an 
intermediate variable Bin as follows. First rewrite B from (79) as 

(97) 
- 
Z = 8gi[+@i&, [=  6 - t ~ .  

Since the shock is hypothesized to be within the induction domain, B < a, and in 
view of (94), one can define 

and be certain that aT < a. Then one defines 

a T  6 g i t T  (98) 
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where gi/gin = o( l ) ,  and notes that (97)-(99) make 

- Si - 
65 = uT+-sin. 

Sin 

Writing the induction solution in intermediate coordinates and using 8 --f co with Ein 
fixed shows that 

- l + ( y w - l ) O  1 
Si fiin +...}. 

Doing the same thing for the UT solution gives 

and matching between (101) 

%h+ 

and 

and (102) is effected if one can reconcile 

Relation (104) is of central importance; using the definitions of gi and &h+ from 
(58) and (89) respectively, (104) requires 

Thus E h +  must be like 1 + O(0-l) in order for the exponentials to be of the same order. 
Define Q)sh via 

(106) 
1 

%h+ = +zQ)Sh, 

and note that 

Since both %h+ and ash+ (see requirement (103)) must be of the form 1 + o(#-') it 
follows that 

where T,, is defined in (5). Then (106) and (107) in (105) show that, to first order, 
Vsh is such that 

% sh = %I) + o( 0 - ') 9 (107) 

ci. 
- ewh = ( y M 2 -  I)-' (a- -c~T)- l .  
B 

But it can be shown that 
1 - - 1 - ci 

B - m  a(yW-1)  
- 

(use (93) and (96) and the various relations between 
a) so that 

uShf ,  f etc., as well as (81) for 

(108) 
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Together with 

which is just a restatement of ( 1 0 3 ) ,  the relation (108) completes the matching, and 
hence the upstream structure sequence of a CR induction domain, a CDR transitional 
domain (specifically (88) etc.) and a CD shock. 

The matching of these various domains has been described here in some little detail 
in order to emphasize the mathematical and physical unity and solidity of the 
asymptotic results, especially in the context of the general predictions of curve-(v)-type 
solutions on figure 3, described in $5. 

Evidently the downstream link between a shock and subsequent subsonic events 
near the u- locus will be very like the one described in $8, but displaced from 6 = 0 
to the selected Esh location. These matters will not be discussed any further at this 
juncture, save to remark that the gasdynamical jump of temperature a t  the shock 
will have a dramatic effect on the rate of progress of the downstream chemical 
activity. 

It should be noted from ( 1 1 7 )  that tsh differs from tT by an amount that is O(0)  
a t  most. Defining 

it can be seen from ( 9 4 )  and (98) that  

( 1 1 0 )  

( 1 1 1 )  

ash @gitsh* 

ash = aT + 0(O2gi), 

where gi is given in (58). Thus ash and aT differ by only exponentially small terms 
in the &limit, and one can replace uT, in ( 1 0 8 )  and ( 1 0 9 )  for example, by ash without 
affecting the validity of the results to first order. There is in fact some merit in doing 
this since i t  makes the results for Tsh+ and u,h+ fit more neatly with the hypothesis 
that the shock is centred a t  &h. 

Having now determined Eh+ and Ushf up to and including o( 1 / e )  i t  is a simple 
matter to find E s h  to the same order of accuracy and then, through (83) in particular, 
to  find ush- and Tsh-. 

The CD domain behaviour is described to first order by ( 8 7 )  as T+qh- and 
?h+tu,h-, at least until the R-term in ( 1 )  becomes comparable to the convection and 
diffusion effects. This downstream CDR type of domain will be described in the usual 
way by using the asymptotic representations 

USh-+gSh--’D(6-[D)’ [’D(O) = 1 ,  (1  1 2 )  

I n  present circumstances 

Provided that 
egsh-7D/ch- = O(l) ,  

the solutions for uD and 7D provide valid asymptotic estimates (1  1 2 )  and (1  13) for 
u and T. The actual solutions for 71) and UD are very like those for 7T and rTT, or 
7i and Ui (see $8). 
Writing 

it can be shown that 
TsD = ~ D + ( Y - ~ ) ~ U D U S ~ - ~  (1 16) 

7sD = O D +  ([-ED)? ( 1 1 7 )  
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where tD and QD are found from matching conditions to be as follows: 

e 
x(6D-tsh) -- In [A4M-'@(%b--sh)]t E h -  

The solution for UD is exactly the same as the result for Ui in (49), with the 
following changes: A is written for A ,  a" for a ,  OD for c^ and 5, for ti. 

The CDR-domain solution is now formally complete. One can see from (1 l6), (117) 
and the solution for U ,  that 7D is changing linearly with g-tD when this latter 
quantity is sufficiently large and positive, as of course is ti, itself. In  view of the 
positive character of a" and Athere is no doubt that UD is increasing with c-tD, but 
the behaviour of 7D is not quite so obvious. Note first from (116) and (117) that 

7~D=76+(Y-11)M2ush-U6= 1, 
so that as [-[+co 

because U k  x tilaunder these conditions. Using the definitions of a" and Afrom (120), 
it  follows that 

7- l  %h- 
Y+ ush+-ush-' 

7;, G5 1-2- 

Equation (109) shows that ush+ is less than unity by an amount that is O(l /e )  ; then 
(83) shows that us& is equal tof-  1 plus the same O( l / O )  quantity. To a first order 
of approximation that neglects these O( l /e )  terms, (121) can be rewritten as 

(122) 

Thus 7b is only positive if M2 exceeds the value (37- l ) /y(3-y) ,  as can be seen by 
using (12). These particular values of the Mach number of the shock wave are just 
what are required to make the Mach number of the flow downstream less than or 
equal to the value y-? or, in other words, to make the downstream flow subsonic 
relative to the local isothermal sound speed. The situation is just the same as the one 
described in the paragraph that follows (69) ; the diminishing temperature will slow 
down the rate of combustion-energy release and so prevent the onset of ignition which, 
before the advent of the shock, appears (from (78)-(80)) to be inevitable when 3+a. 

When 1 < M2 < (3y-l)/y(3-7) the dynamics of gaseous behaviour act to 
prevent ignition, and combustion proceeds, so far as the present analysis indicates, 
as a relatively slow decomposition of the fuel species. When M > 1 and the shock 
lies inside the induction zone, as has been postulated throughout this section, the 
M-value to ensure isothermally subsonic flow behind the shock must be greater than 
(3y- l) /y(3-7) by an amount that is O(l /B) .  

The linear dependence of 7, on (-ED will eventually lead to a failure of the 
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condition (1  15). This signifies the appearance of a new domain of the CR type, within 
which 

(123) 
1 
8 

T %h-+-TD(SD), 

where gsh- is defined in (1 14) ; cD is given in (1 18). Calculation of TD and UD, includ- 
ing matching of the solutions with (112) and (113), is straightforward and there is 
nothing to be gained here by describing all, or any, of the intermediate steps. It 
is advantageous to use the local Mach number msh-, defined by 

mh- = M"u&-/qh-? (125) 

in displaying the results, and it is noted in passing that 7; in (121) can be re-expressed 
in these terms by the relation 

(126 

Note the results for 7i that follow from (67) and (68), and compare them with (126) 
also note the definition of a in (81), and compare with (126). It is found that 

(127 

and these results should be compared with (80)-(83). 
Evidently there is no dramatic change in the rough general character of the events 

that the shock wave has interrupted in the neighbourhood of &,,, but one must take 
heed of two important modifications that it has brought about. The first is the 
substantial shortening of the lengthscale of the combustion activity, since gsh- 9 gi, 
as can be seen from (58) and (1  14) and the fact that q h -  > 1. This is an illustration 
of the intuitively obvious effect of shock heating; the illustration here is reinforced 
by specific formulae and can therefore be quantified if desired. 

The second point to be made is in many ways a warning about 'intuitively obvious ' 
effects, and enlarges somewhat on the remarks made below (122). If the shock is too 
weak, so that it drives the flow to a local speed that is (essentially) subsonic relative 
to the isentropic frozen sound speed but supersonic relative to the local isothermal 
or Newtonian frozen sound speed, then even though the local rate of chemical activity 
is speeded up behind the shock compressibility effects supervene and local temperatures 
actually decrease below q h - .  This can be seen from (127), which shows that when 
ash- < 0 (ymth- > 1 ,  mEh- < 1) TD is always negative and diminishing as ED 
increases. Equation (128) shows that UD, and hence u, is increasing; thus chemical 
energy is increasing flow kinetic energy a t  the expense of thermal energy. This 
gasdynamical suppression of ignition will be examined in more detail in the second 
part of this work. 

When ash- > 0 (ymgh- C 1) an estimate of the onset of ignition is found from (127), 

(129) 
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Subsequent events will be described in another paper. Observe that the asymptotic 
analysis provides us with an estimate of the location of these events relative to 5 = 0 
via equations (124) and (1 18) for any chosen 6Sh ; in the present section t sh  must lie 
within the induction zone, by hypothesis, and it has already been remarked that this 
requires tsh < a/Bgi  (see (79)-(81)). 

12. Conclusions 
The reader is reminded that M is the Mach number of the flow at inlet to the system 

through the face of the flameholder, while m is a general local value of the Mach 
number; uo is proportional to the gas velocity gradient at inlet and is therefore 
influenced by the allowable changes of pressure across the field of flow. Some of the 
main results of the present work are as follows. 

1 .  For the given model of a reacting compressible flow a unique continuous field 
structure exists for all M within the range of allowable go values. 

2. For M < 1 almost inert zones of gasdynamical adjustment exist at the face of 
the flameholder; they act to reduce local velocity gradients from uo to values that 
are then compatible with a balance between convection and reaction alone, in which 
mode most of the combustion energy is released. 

3. For M > 1 the remarks in item 2 apply for most allowable go values, which give 
rise to shock-wave-like zones of almost-inert gasdynamical behaviour at the face of 
the flameholder. However, there is a very small critical negative value of uo which, 
when u0 is near to and below it,  gives rise to shock waves that lie well within the 
combustion activity and far from the flameholder. 

4. For u,, within a very close neighbourhood of its critical value a supersonic (i.e. 
m > 1 everywhere) combustion field exists. 

5.  Inlet M-values lying between the classical upper and lower Chapman-Jouguet 
values are permitted ; however, a gasdynamical adjustment zone then always exists 
a t  the flameholder which reduces rn to a value less than or equal to the lower CJ value 
before significant release of combustion energy begins. 

6. When M < 1 it  must also be less than y 4 ,  otherwise ignition is not possible; 
the kinetic energy of the flow increases a t  the expense of thermal energy when 
1 > M > y-4. When M > 1 it  must be large enough to make m behind the shock 
(wherever the shock may be within the induction zone) less than y-4, for the reasons 
just given. 

The asymptotic analysis shows throughout that  the field consists of thin, effectively 
inert, zones of convection-diffusion balance (gasdynamical adjustment) joined, by 
somewhat thicker transition layers, in which convection, diffusion and reaction all 
play a part, to long domains in which convection-reaction balances dominate and in 
which the major part of the combustion energy is released. There is no a priori reason 
why a porous-plug burner could not be run with supersonic speeds a t  the outlet; 
although i t  may prove to  be quite difficult to manufacture a sufficiently 'small-grain ' 
porosity with the necessary internal convergent-divergent duct structure i t  may be 
worth attempting the task so that studies of combustion in simple compressible-flow 
configurations could be undertaken. 

The above is an account of work carried out between 25 May and 3 August 1982 
while the writer was a guest of Professor D. R. Kassoy and Professor J. Bebernes a t  
the University of Colorado, Boulder. It is a pleasure to be able to record my thanks 
to my hosts for their invitation and for the stimulus of their company during this 
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period. Thanks are also due to  the U.S. Army Research Office, who made the visit 
possible by their generous provision of financial support under contract 
DAAG29-82-K-0069. 

Appendix A. Limitations on 6 
From (28), potentially admissible values for ub are given by 

ub+ - = i(f f I{:(f -8)'- (f - 1 + F))'(? (A 1) 

and it is at once clear that 8 cannot be chosen with complete freedom for any given 
f and F (or M and 6) values. In  order for the last part of (A 1) to be real one must 
find (f- 2)2 - 4F >, (2f - 8) 8. 

I n  other words, one must find 8 > 8+, or 8 < 8-, where 

8, = f* 2(( f - 1 + F)tl. (A 2) 

Since f- 1 > 0 and F > 0 (because 0 > 0) it follows that 8, - are both always real, 
with 8, > f .  The latter implies that, when 8 = 8+, 

ub+ = ub- = i ( f-8+) < 0, 

as can be seen from (A 1). This last equation makes it clear that Ubf < 0 for all 8 2 8+, 
since f - 1 + F > 0, and so these conditions on 8 are of no physical significance. 

A general limitation on the value of 8 is therefore 

8 < 8- =f-2l(f- 1 +F)iJ .  

4F 2 (f-2)2. 
Note that 8- < 0 if 

This condition can be translated into terms of M, y and 0 through the relations in 
(1 3) and (14) and reads 

(1  -M2)2 < 2(y+ 1 )  QM2. 

The equality sign in (A 5 )  defines a special pair of inlet Mach numbers, namely the 
Chapman-Jouguet Mach numbers, 

so that 

Thus the inlet Mach number in the present configuration can lie in the domain of Mach 
numbers that is described as forbidden or inaccessible in the classical Hugoniot-curve 
and Rayleigh-line analysis of metastable oncoming streams, provided that 
8 < 8- < 0, where 8- is defined in (A 3). The further implications of this result are 
worked out in 5 7 .  

%,+_ = ~ 1 + ( Y + 1 ) ~ ~ f 1 [ ~ ~ + ( Y + 1 ) & ~ 2 - - l ~ 1  3 1 7  (A 6) 

(A 7)  M p -  < M < McJ+-B < 8- < 0. 

Equation (12) shows that when 

while when 

These facts are helpful in the interpretation of the locus of possible end-states as a 
function of 8 for any given values of M and y (and hence f and 0. 
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A-ppendix B. Flow pressure and its relation to 6 

temperature T a r e  simply related by 
The present model assumes that the dimensional pressure p, density p and 

where R, is a fixed value of the gas constant and 
unit area. At the flameholder 

is the constant mass flux per 
- 

TO P o  = RR,,, 
UO 

so that, defining the dimensionless absolute pressure to be 

it follows that 
P = FIFO3 

p = - =  T T ,  --$(y- 1) M2u. 
u u  

The last result follows from (3) ;  using (22 )  we can write 

p = :M2{(r+l)--(r-l)u] U 

in general. I n  the particular circumstances for which 

u = u+, 

the corresponding values of p ,  namely p + ,  - are 

- 

p ,  = +M2( (u+ + u-) f y(u+ - u-)}. (B 4) 

It can be shown that y(u+ - u-) 9 (u++ u-), so that p ,  is always positive, as, of course, 
is p -  a fortiori. 

Since u+ + u- is constant (see ( 2 2 ) )  while u+ -up diminishes as 5 increases, i t  follows 
that p ,  increases while p -  decreases in these circumstances. 

It is also rather easy to see how the final pressures pb+ depend upon parameters 
like M and go by reverting to ( 2 ) .  Making use of (B 2 ) ,  itfollows that 

pb+ - = l+ym{l-ubk-gO}, 

since u’+O as u+ub+. The values ub+ are given in (A 1). - - 

Appendix C. Subsonic and supersonic flow domains 
Note first thai, the local Mach number in the flow is given by 

ma = M2u2T-I. 
Define 

so that 

.m2 - MZU2 T-1 
f -  f f  

T, = T++$(y-l)M%2, - - = mUym;2+&(y-l)}. 

2T, 
( y +  1 ) W ’  

Since (22)  gives 
u+u- = 
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it follows from (C 3) and (C 4) that 

(m;2++g(y- 1 ) l )  ( m ~ ~ + + t ( y - l ) )  = t ( y +  1)2,  (C 5 )  

m + > 1 ,  m - < l .  (C 6) 

from which i t  can be deduced that 

Recall that u+ > u- T+ < T- a t  the same stagnation temperature. Thus u+ is a 
'supersonic' curve, while u- is 'subsonic'. I n  particular, any solution that ends at 
ub+ describes a flow that emerges from the chemical and gasdynamical interactions 
as a supersonic stream. Using (C l ) ,  one can write 

T, = M2uZ{m-2+4(y- l)}, 

so that, when m = 1 and the flow is locally sonic, one finds that 

The last result follows from (22) and u* is the sonic speed. The location of the latter 
is displayed on figures 2 and 3 (the line lies below +(u+ + u-) because this sum is always 
greater than (u+u-)i for any u+ =k u-). It can now be seen that any solution curve 
on figure 3 that stays above the sonic line u*, having begun a t  u = 1 with M > 1, 
represents a case of fully supersonic combustion. 

Appendix D. The loci uok 
I n  order to  investigate the small8 case, and indeed to make more precise the 

meaning of the word small in this context, i t  is necessary to  acquire some more 
information about integral-curve behaviour for (19) when these curves are initially 
in close proximity to the supersonic u+ locus. It is important to know whether integral 
curves that lie between the u+ and u- loci can ever escape from that region across 
the u+ line (the solutions (i) and (ii) sketched on figure 2 demonstrate that  escape 
into u < u- is not only possible but necessary for the acquisition of an ultimately 
subsonic solution). To answer this question define 

u = U+(U -u, (D 1)  

and examine the sign of U'. If U' < 0 the integral curve must, locally, be converging 
on u+, whilst when U' > 0 the integral curve will diverge from u+ locally. From (19) 
and (D 1 )  it follows that 

Recalling (24), which shows that u; < 0 and, incidentally, that it is of small absolute 
magnitude since Ti has this behaviour, (D 2) shows that U' = 0 for U-values near 
to both u+ and u-. To a good approximation, the values uO+ - of u a t  which U' vanishes 
are given by 

Uo+ z u+-Ilu:l(l-~)l, (D 3a) 
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If a?+&-,  (A 1 )  and (A 3 )  make i t  clear that  ub++ub-; thus u++u- as (+a, and 
it  is possible for uo+ and uo- to  first merge and then cease to exist for some large 5-values 
in these particular conditions. This fact has no radical effect on the character of the 
solutions. 

The existence of a locus uo- in the neighbourhood of u- is confirmation of the sort 
of solution-curve behaviour depicted in figure 2, curves (i) and (ii), but does not add 
anything new to our understanding of this behaviour. 

Equation (D 3 a )  describes a locus of points at which U' vanishes; it should be 
observed that i t  is not parallel to  u+ for the twin reasons that Iu;I and (1 -u-/u+) 
vary with 5. I n  general terms, lull will grow to a maximum value as 6 increases from 
zero and then subside to zero as &+m; uo+ therefore approaches u+ as c-tco. The 
quantity (1 - u-/u+) diminishes in size as 6 increases, and so uO+ starts close to u+ 
a t  6 = 0, moves away from i t  as 6 increases, and finally approaches u+ as 6- co. It 
is readily seen from (D 2 )  that U' < 0 for u in uo+ < u < u+ and u- < u < uo+, while 
U' > 0 for uo- < u < uO+. 

For a fixed value of 6, and therefore of u+, u- and u;, (D 2) shows that 

u+u- d2U' u+ u- < 0. -- -=-2-  d LT' 
du U du2 u3 

Thus U' takes its maximum value of 

ULax = u;+ (U$-UL)2 

on the u-curve that crosses the sonic line u* = (u+u-)i. Note that if u+ +up too closely 
i t  is possible to find ULax with the same sign as u;, namely negative; this is 
confirmation of the remarks made after (D 3 b ) .  
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